
INTRODUCTION

Diversification rate shifting patterns over evolutionary his-
tory have been observed in many taxa (Barraclough and Vog-
ler, 2002; Rabosky et al., 2007; Rabosky and Lovette, 2008a;
Alfaro et al., 2009). According to the prediction of adaptive
radiation (Schluter, 2000; Losos, 2010; Gillespie, 2013), div-
ersification rates can vary over evolutionary time due to the
limitations of ecological opportunities (Ricklefs, 2006; Ra-
bosky, 2009; Harmon et al., 2010; Losos, 2010; Myers and
Burbrink, 2012). 

Diversification shifting pattern could be modeled in terms
of a pattern with multiple-discrete shifts (MDS) (Alfaro et al.,
2009; Antonelli and Sanmartín, 2011) or one-continuous
shift (OCS) (Rabosky and Lovette, 2008a, 2008b) over the
phylogeny. In comparison, a global one-constant-rate model
(OCR) predicts that there are no shifting trends of diversifi-
cation rates over the phylogenetic history, which might be
used as a null model when investigating rate-shifting patterns
of species diversification (Rabosky, 2007; Rabosky and Lo-

vette, 2008a). MDS and OCR models can be implemented
using “MEDUSA” package (Brown et al., 2013), while OCR
and OCS models can be performed using “laser” package
(Rabosky, 2007) under R environment (R Development Core
Team, 2011). There are many systematic comparisons on
using both R packages to model rate-changing patterns of
species in previous literatures (Alfaro et al., 2009; Fordyce,
2010a; Rabosky et al., 2012). When it comes to the compari-
son of these two packages, “MEDUSA” package is much
more flexible since it could allow multiple rate shifting pat-
terns over the phylogeny (Brown et al., 2013). Thus, alterna-
tive hypotheses for testing rate shifting patterns of species
diversification can be done easily using this package. In con-
trast, “laser” package is very limited because only three den-
sity-dependent models are implemented (Rabosky, 2006,
2007; Chen, 2013). However, as mentioned above, its advan-
tage is to model the continuous rate shifting pattern. 

Amphibian diversity has attracted much attention in recent
years due to its high sensitivity to global climate change and
habitat destruction (Wake, 1991, 2007). There are many
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literatures contributing to understand global macroevolutio-
nary and macroecological patterns of amphibians (Grenyer
et al., 2006; Buckley and Jetz, 2007; Roelants et al., 2007;
Wiens, 2007; Qian, 2009; Pyron and Wiens, 2011; Fritz and
Rahbek, 2012). Moreover, diversification analysis of specif-
ic or overall amphibian clades has been found in some recent
publications (Roelants et al., 2007; Wiens, 2007; Wollenberg
et al., 2011; Zimkus et al., 2012). However, diversification
rate analysis by comparing alternative rate-shifting models
has not been performed on all the living amphibians yet see-
mingly in comparison to birds (Jetz et al., 2012) or other taxa
(Rabosky et al., 2012). 

In the present study, by comparing OCS, OCT and MDS
models as described above, I evaluate the most appropriate
evolutionary model for quantifying global amphibian tempo-
ral diversification patterns through model selection and com-
parison. I implement different models using both “MEDUSA”
and “laser” packages.

For the present study, a full dated phylogenetic tree for
global amphibians was obtained from the attached data sets
in the “geiger” package (Harmon et al., 2008) under R envi-
ronment (R Development Core Team, 2011), which was re-
constructed on the basis of some previous studies (Roelants
et al., 2007; Pyron and Wiens, 2011). More information about
this tree file is available at URL: http://www.inside-r.org/
packages/cran/geiger/docs/amphibia. 

The γ statistic (Pybus and Harvey, 2000) was applied first-
ly to test whether diversification rates of amphibians would
keep constant over evolutionary time scale. If the constant-
rate assumption was broken down, then time-varying diver-
sification rate models should be employed to fit the phyloge-
ny and the best one was chosen using Akaike Information
Criteria (AIC) values. 

OCS, OCT, and MDS models were fitted onto the amphi-
bian phylogeny using “laser” package (Rabosky, 2007; For-
dyce, 2010a). In specific, for OCS models, four models were
implemented: DDX, DDL, SPVAR and EXVAR. DX and
DDL fit exponential and logistic variants of the density-depen-
dent speciation rate model respectively (Rabosky, 2006, 2007).
SPVAR model is a model with an exponentially declining
speciation rate through time and constant extinction, while
EXVAR is a model with exponentially increasing extinction
and constant speciation (Rabosky, 2006, 2007). For MDS
models, the two-rate model (coded as “twoRate”) is comput-
ed in “laser” package. MDS models with multiple discrete
rates were implemented using “MEDUSA” package (Brown
et al., 2013). The best number of discrete rate shifts in MDS
model was selected through a stepwise AIC procedure (Brown
et al., 2013). 

When there was no rate shift in the species phylogeny, MDS
model was equivalent to OCT model when using “MEDUSA”

package. In other words, MDS models nesetd OCT model
in “MEDUSA” package. Besides, since OCT is a constant
birth-death model, and therefore can be also estimated using
the function “birthdeath” in the classical R phylogenetic
package “ape” (Paradis et al., 2004). 

RESULTS

The γ statistic rejected the null model which stated that
there was a globally constant diversification rate of amphi-
bians over the evolutionary time (γ==-5.556, p⁄0.001). As
a consequence, rate-shifting models can be applied to the
phylogeny of global amphibians with reasonable grounds.

Throughout the comparison of AIC values for different rate-
shifting models implemented using “laser” package (Table
1), it was found that twoRate discrete model was the best
one to characterize diversification rates of amphibians over
the phylogeny in comparison to other OCS models. Further-
more, for the MDS models implemented using “MEDUSA”
package, it was identified that there were sixteen shifts over
different clades in the phylogeny (Fig. 1), further supporting
the MDS model. 

DISCUSSION

OCS diversification rate models have been applied and
examined by a variety of species assemblages (Rabosky,
2006, 2009; Phillimore and Price, 2008; Rabosky and Love-
tte, 2008a). MDS models are also growingly applied in many
recent studies (Alfaro et al., 2009; Santini et al., 2009; Pyron
and Burbrink, 2012; Rabosky et al., 2012; Brown et al., 2013)
given its high flexibility on modeling rate shifting patterns
and identifying rate-changing lineages using stepwise AIC
procedure (Alfaro et al., 2009). For global amphibians, it was
found that there were sixteen shifts of the diversification rates
in internal nodes over the evolutionary time, suggesting that
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Table 1. Model comparison and selection of different rate-vary-
ing models and the constant-rate model for the diversification
rates of global amphibians using “laser” package 

Model Likelihood AIC

DDX 8,427.032 -16,850.06
DDL 8,415.036 -16,826.07
SPVAR 8,390.294 -16,774.59
EXVAR 8,410.43 -16,814.86
OCR 8,411.812 -16,819.62
twoRate 8,505.229 --17,004.46

The best model is marked in boldface.
AIC, Akaike Information Criteria.



diversification rates of global amphibians follow MDS mo-
dels.

“MEDUSA” package is the preferential choice in the an-
alysis of time-varying diversification of species given the
fact that multiple shifts of diversification rates are widely
observed across different taxa (Jetz et al., 2012; Rabosky et
al., 2012) and the rates after shifts can be either accelerated
or reduced (Fordyce, 2010b; Jetz et al., 2012). However,
“laser” package should be used when one wants to model
time-declining OCS situation. But for large phylogenies,
multiple shifts should be ubiquitous and thus MDS models
may be one of the first choices to implement.

Sampling issue can be a prevailing problem limiting the
implication of the present study. This is because phylogene-
tic trees usually can not cover all the external living species
and may result into biases of the results (Chen, 2013). For
my study, the amphibian phylogenetic tree used currently
contains only 2,871 species, while global amphibians species

has a number of over 7,000. Thus, no more than a half of the
amphibian species can be represented and subsequently the
robustness of the results should be verified in the future when
more amphibian taxa are covered in the tree.
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Fig. 1. Sixteen shifting events of diversification rates identified in the internal nodes for the phylogeny of global amphibians using
“MEDUSA” package.
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